Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nat Commun ; 14(1): 1332, 2023 03 11.
Article in English | MEDLINE | ID: covidwho-2277928

ABSTRACT

Currently, the real-life impact of indoor climate, human behaviour, ventilation and air filtration on respiratory pathogen detection and concentration are poorly understood. This hinders the interpretability of bioaerosol quantification in indoor air to surveil respiratory pathogens and transmission risk. We tested 341 indoor air samples from 21 community settings in Belgium for 29 respiratory pathogens using qPCR. On average, 3.9 pathogens were positive per sample and 85.3% of samples tested positive for at least one. Pathogen detection and concentration varied significantly by pathogen, month, and age group in generalised linear (mixed) models and generalised estimating equations. High CO2 and low natural ventilation were independent risk factors for detection. The odds ratio for detection was 1.09 (95% CI 1.03-1.15) per 100 parts per million (ppm) increase in CO2, and 0.88 (95% CI 0.80-0.97) per stepwise increase in natural ventilation (on a Likert scale). CO2 concentration and portable air filtration were independently associated with pathogen concentration. Each 100ppm increase in CO2 was associated with a qPCR Ct value decrease of 0.08 (95% CI -0.12 to -0.04), and portable air filtration with a 0.58 (95% CI 0.25-0.91) increase. The effects of occupancy, sampling duration, mask wearing, vocalisation, temperature, humidity and mechanical ventilation were not significant. Our results support the importance of ventilation and air filtration to reduce transmission.


Subject(s)
Air Pollution, Indoor , Humans , Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Belgium , Respiration , Odds Ratio , Ventilation/methods
2.
Int J Environ Res Public Health ; 20(4)2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2241803

ABSTRACT

OBJECTIVES: To review the risk of airborne infections in schools and evaluate the effect of intervention measures reported in field studies. BACKGROUND: Schools are part of a country's critical infrastructure. Good infection prevention measures are essential for reducing the risk of infection in schools as much as possible, since these are places where many individuals spend a great deal of time together every weekday in a small area where airborne pathogens can spread quickly. Appropriate ventilation can reduce the indoor concentration of airborne pathogens and reduce the risk of infection. METHODS: A systematic search of the literature was conducted in the databases Embase, MEDLINE, and ScienceDirect using keywords such as school, classroom, ventilation, carbon dioxide (CO2) concentration, SARS-CoV-2, and airborne transmission. The primary endpoint of the studies selected was the risk of airborne infection or CO2 concentration as a surrogate parameter. Studies were grouped according to the study type. RESULTS: We identified 30 studies that met the inclusion criteria, six of them intervention studies. When specific ventilation strategies were lacking in schools being investigated, CO2 concentrations were often above the recommended maximum values. Improving ventilation lowered the CO2 concentration, resulting in a lower risk of airborne infections. CONCLUSIONS: The ventilation in many schools is not adequate to guarantee good indoor air quality. Ventilation is an important measure for reducing the risk of airborne infections in schools. The most important effect is to reduce the time of residence of pathogens in the classrooms.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , SARS-CoV-2 , Carbon Dioxide/analysis , Respiration , Ventilation/methods , Schools , Air Pollution, Indoor/analysis
3.
Int J Environ Res Public Health ; 19(21)2022 Nov 06.
Article in English | MEDLINE | ID: covidwho-2099555

ABSTRACT

The COVID-19 pandemic has generated a renewed interest in indoor air quality to limit viral spread. In the case of educational spaces, due to the high concentration of people and the fact that most of the existing buildings do not have any mechanical ventilation system, the different administrations have established natural ventilation protocols to guarantee an air quality that reduces risk of contagion by the SARS-CoV-2 virus after the return to the classrooms. Many of the initial protocols established a ventilation pattern that opted for continuous or intermittent ventilation to varying degrees of intensity. This study, carried out on a university campus in Spain, analyses the performance of natural ventilation activated through the information provided by monitoring and visualisation of real-time data. In order to carry out this analysis, a experiment was set up where a preliminary study of ventilation without providing information to the users was carried out, which was then compared with the result of providing live feedback to the occupants of two classrooms and an administration office in different periods of 2020, 2021 and 2022. In the administration office, a CO2-concentration-based method was applied retrospectively to assess the risk of airborne infection. This experience has served as a basis to establish a route for user-informed improvement of air quality in educational spaces in general through low-cost systems that allow a rational use of natural ventilation while helping maintain an adequate compromise between IAQ, comfort and energy consumption, without having to resort to mechanical ventilation systems.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , COVID-19/epidemiology , Spain/epidemiology , Pandemics , Retrospective Studies , SARS-CoV-2 , Ventilation/methods , Air Pollution, Indoor/analysis
4.
Int J Environ Res Public Health ; 19(18)2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2010075

ABSTRACT

The COVID-19 pandemic has made significant impacts on public health, including human exposure to airborne pathogens. In healthcare facilities, the locations of return air vents in ventilation systems may have important effects on lowering airborne SARS-CoV-2 transmission. This study conducted experiments to examine the influence of different return air vents' heights (0.7 m, 1.2 m, and 1.6 m) on the particle removal effects in a simulated patient ward. Three different ventilation systems were examined: top celling air supply-side wall return (TAS), underfloor air supply-side wall return (UFAS) and side wall air supply-side wall return (SAS). CFD simulation was applied to further study the effects of return air inlets' heights (0.3 m, 0.7 m, 1.2 m, 1.6 m, and 2.0 m) and air exchange rates. The technique for order of preference by similarity to ideal solution (TOPSIS) analysis was used to calculate the comprehensive scores of 60 scenarios using a multi-criterion method to obtain the optimal return air inlets' heights. Results showed that for each additional 0.5 m distance in most working conditions, the inhalation fraction index of medical staff could be reduced by about 5-20%. However, under certain working conditions, even though the distances between the patients and medical personnel were different, the optimal heights of return air vents were constant. For TAS and UFAS, the optimal return air inlets' height was 1.2 m, while for SAS, the best working condition was 1.6 m air supply and 0.7 m air return. At the optimum return air heights, the particle decay rate per hour of SAS was 75% higher than that of TAS, and the rate of particle decay per hour of SAS was 21% higher than that of UFAS. The location of return air inlets could further affect the operating cost-effectiveness of ventilation systems: the highest operating cost-effectiveness was 8 times higher than the lowest one.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Bays , COVID-19/epidemiology , Hospitals , Humans , Pandemics , SARS-CoV-2 , Ventilation/methods
5.
Indoor Air ; 32(8): e13097, 2022 08.
Article in English | MEDLINE | ID: covidwho-2008742

ABSTRACT

In a virus pandemic context, buildings ventilation has been recognized as a solution for preventing transmission of the virus in aerosolized form. The impact of the widespread recommendation of window opening and sealing door on ventilation circuits needs to be considered with a multizone approach. We modeled the airflow distribution in a building where people are isolating in a pandemic context, including one infected person. We analyzed the impact of opening the window and sealing the door in the quarantine room on exposures and probability of infection for occupants of the flat and of adjacent flats. In order to study the sensitivity of the results, we tested three ventilation systems: balanced, exhaust-only, and humidity-based demand-controlled, and several window- and door-opening strategies. When the door of the quarantine room is sealed, we observe that opening the window in the quarantine room always results in increased exposure and probability of infection for at least one other occupant, including in neighbors' apartments. When all internal doors are opened, we observe moderate impacts, with rather an increase of exposure of the occupants of the same apartments and of their probability of infection, and a decrease for the occupants located in other apartments. Based on the analysis on the airflows distribution in this case study, we conclude that sealing the internal door has more influence than opening the window of the quarantine room, whatever the ventilation system. We observe that this widespread recommendation to open the window of a quarantine room and to seal the door is based on the consideration of a single zone model. We illustrate the importance of moving from such a single zone approach to a multizone approach for quantifying ventilation and airing impacts in multizone buildings as residences in order to prevent epidemics of viruses such as SARS-CoV-2. It highlights the need of air leakage databases.


Subject(s)
Air Pollution, Indoor , COVID-19 , Housing , Humans , SARS-CoV-2 , Ventilation/methods
6.
Indoor Air ; 32(8): e13087, 2022 08.
Article in English | MEDLINE | ID: covidwho-2008741

ABSTRACT

The SARS-CoV-2 pandemic, which suddenly appeared at the beginning of 2020, revealed our knowledge deficits in terms of ventilation and air pollution control. It took many weeks to realize that aerosols are the main route of transmission. The initial attempt to hold back these aerosols through textile masks seemed almost helpless, although there is sufficient knowledge about the retention capacity of fabric filters for aerosols. In the absence of a sufficient number of permanently installed heating, ventilation, and air conditioning systems, three main approaches are pursued: (a) increasing the air exchange rate by supplying fresh air, (b) using mobile air purifiers, and (c) disinfection by introducing active substances into the room air. This article discusses the feasibility of these different approaches critically. It also provides experimental results of air exchange measurements in a school classroom that is equipped with a built-in fan for supplying fresh air. With such a fan and a window tilted at the appropriate distance, an air exchange rate of 5/h can be set at a low power level and without any significant noise pollution. Heat balance calculations show that no additional heat exchanger is necessary in a normal classroom with outside temperatures above 10°C. Furthermore, a commercial mobile air purifier is studied in a chamber and a test room setup in order to examine and evaluate the efficiency of such devices against viable viruses under controlled and realistic conditions. For this purpose, bacteriophages of the type MS2 are used. Both window ventilation and air purifiers were found to be suitable to reduce the concentration of phages in the room.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/prevention & control , COVID-19/prevention & control , Humans , Respiratory Aerosols and Droplets , SARS-CoV-2 , Schools , Ventilation/methods
8.
PLoS One ; 16(11): e0257549, 2021.
Article in English | MEDLINE | ID: covidwho-1793615

ABSTRACT

Particulate generation occurs during exercise-induced exhalation, and research on this topic is scarce. Moreover, infection-control measures are inadequately implemented to avoid particulate generation. A laminar airflow ventilation system (LFVS) was developed to remove respiratory droplets released during treadmill exercise. This study aimed to investigate the relationship between the number of aerosols during training on a treadmill and exercise intensity and to elucidate the effect of the LFVS on aerosol removal during anaerobic exercise. In this single-center observational study, the exercise tests were performed on a treadmill at Running Science Lab in Japan on 20 healthy subjects (age: 29±12 years, men: 80%). The subjects had a broad spectrum of aerobic capacities and fitness levels, including athletes, and had no comorbidities. All of them received no medication. The exercise intensity was increased by 1-km/h increments until the heart rate reached 85% of the expected maximum rate and then maintained for 10 min. The first 10 subjects were analyzed to examine whether exercise increased the concentration of airborne particulates in the exhaled air. For the remaining 10 subjects, the LFVS was activated during constant-load exercise to compare the number of respiratory droplets before and after LFVS use. During exercise, a steady amount of particulates before the lactate threshold (LT) was followed by a significant and gradual increase in respiratory droplets after the LT, particularly during anaerobic exercise. Furthermore, respiratory droplets ≥0.3 µm significantly decreased after using LFVS (2120800±759700 vs. 560 ± 170, p<0.001). The amount of respiratory droplets significantly increased after LT. The LFVS enabled a significant decrease in respiratory droplets during anaerobic exercise in healthy subjects. This study's findings will aid in exercising safely during this pandemic.


Subject(s)
Air Conditioning/methods , COVID-19/prevention & control , Exercise/physiology , Particulate Matter/chemistry , Adult , Aerosols/chemistry , Air Filters , Anaerobic Threshold/physiology , COVID-19/metabolism , Exercise Test/methods , Exhalation/physiology , Female , Heart Rate/physiology , Humans , Japan , Lactic Acid/metabolism , Male , Oxygen Consumption/physiology , Respiration , Respiratory System/physiopathology , Running/physiology , SARS-CoV-2/pathogenicity , Ventilation/methods
9.
Sci Total Environ ; 833: 155173, 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1783747

ABSTRACT

Proper air distribution is crucial for airborne infection risk control of infectious respiratory diseases like COVID-19. Existing studies evaluate and compare the performances of different air distributions for airborne infection risk control, but the mechanisms of air distribution for airborne infection risk control remain unclear. This study investigates the mechanisms of air distribution for both overall and local airborne infection risk controls. The experimentally validated CFD models simulate the contaminant concentration fields in a hospital ward based on which the airborne infection risks of COVID-19 are evaluated with the dilution-based expansion of the Wells-Riley model. Different air distributions, i.e., stratum ventilation, displacement ventilation, and mixing ventilation, with various supply airflow rates are tested. The results show that the variations of the overall and local airborne infection risks under different air distributions and different supply airflow rates are complicated and non-linear. The contaminant removal and the contaminant dispersion are proposed as the mechanisms for the overall and local airborne infection risk controls, respectively, regardless of airflow distributions and supply airflow rates. A large contaminant removal ability benefits the overall airborne infection risk control, with the coefficient of determination of 0.96 between the contaminant removal index and the reciprocal of the overall airborne infection risk. A large contaminant dispersion ability benefits the local airborne infection risk control, with the coefficient of determination of 0.99 between the contaminant dispersion index and the local airborne infection risk.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , Ventilation/methods
10.
J Occup Environ Hyg ; 19(5): 295-301, 2022 05.
Article in English | MEDLINE | ID: covidwho-1740663

ABSTRACT

Ventilation plays an important role in mitigating the risk of airborne virus transmission in university classrooms. During the early phase of the COVID-19 pandemic, methods to assess classrooms for ventilation adequacy were needed. The aim of this paper was to compare the adequacy of classroom ventilation determined through an easily accessible, simple, quantitative measure of air changes per hour (ACH) to that determined through qualitative "expert judgment" and recommendations from the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and the American Conference of Governmental Industrial Hygienists (ACGIH)®. Two experts, ventilation engineers from facilities maintenance, qualitatively ranked buildings with classrooms on campus with regard to having "acceptable classroom ventilation." Twelve lecture classrooms were selected for further testing, including a mix of perceived adequate/inadequate ventilation. Total air change per hour (ACH) was measured to quantitatively assess ventilation through the decay of carbon dioxide in the front and rear of these classrooms. The outdoor ACH was calculated by multiplying the total ACH by the outdoor air fraction. The classrooms in a building designed to the highest ASHRAE standards (62.1 2004) did not meet ACGIH COVID-19 recommendations. Four of the classrooms met the ASHRAE criteria. However, a classroom that was anticipated to fail based on expert knowledge met the ASHRAE and ACGIH criteria. Only two classrooms passed stringent ACGIH recommendations (outdoor ACH > 6). None of the classrooms that passed ACGIH criteria were originally expected to pass. There was no significant difference in ACH measured in the front and back of classrooms, suggesting that all classrooms were well mixed with no dead zones. From these results, schools should assess classroom ventilation considering a combination of classroom design criteria, expert knowledge, and ACH measurements.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/prevention & control , COVID-19/epidemiology , Humans , Pandemics , Schools , Universities , Ventilation/methods
12.
Virol J ; 18(1): 109, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1388777

ABSTRACT

BACKGROUND: The ongoing SARS-CoV-2 pandemic has spread rapidly worldwide and disease prevention is more important than ever. In the absence of a vaccine, knowledge of the transmission routes and risk areas of infection remain the most important existing tools to prevent further spread. METHODS: Here we investigated the presence of the SARS-CoV-2 virus in the hospital environment at the Uppsala University Hospital Infectious Disease ward by RT-qPCR and determined the infectivity of the detected virus in vitro on Vero E6 cells. RESULTS: SARS-CoV-2 RNA was detected in several areas, although attempts to infect Vero E6 cells with positive samples were unsuccessful. However, RNase A treatment of positive samples prior to RNA extraction did not degrade viral RNA, indicating the presence of SARS-CoV-2 nucleocapsids or complete virus particles protecting the RNA as opposed to free viral RNA. CONCLUSION: Our results show that even in places where a moderate concentration (Ct values between 30 and 38) of SARS-CoV-2 RNA was found; no infectious virus could be detected. This suggests that the SARS-CoV-2 virus in the hospital environment subsides in two states; as infectious and as non-infectious. Future work should investigate the reasons for the non-infectivity of SARS-CoV-2 virions.


Subject(s)
COVID-19/transmission , Cross Infection/epidemiology , Disease Transmission, Infectious/statistics & numerical data , Environmental Monitoring/methods , Animals , Cell Line , Chlorocebus aethiops , Confined Spaces , Cross Infection/virology , Hospitals , Humans , Risk , SARS-CoV-2/growth & development , Ventilation/methods , Vero Cells
13.
Psychosomatics ; 61(6): 662-671, 2020.
Article in English | MEDLINE | ID: covidwho-1386490

ABSTRACT

BACKGROUND: Patients with psychiatric illnesses are particularly vulnerable to highly contagious, droplet-spread organisms such as SARS-CoV-2. Patients with mental illnesses may not be able to consistently follow up behavioral prescriptions to avoid contagion, and they are frequently found in settings with close contact and inadequate infection control, such as group homes, homeless shelters, residential rehabilitation centers, and correctional facilities. Furthermore, inpatient psychiatry settings are generally designed as communal spaces, with heavy emphasis on group and milieu therapies. As such, inpatient psychiatry services are vulnerable to rampant spread of contagion. OBJECTIVE: With this in mind, the authors outline the decision process and ultimate design and implementation of a regional inpatient psychiatry unit for patients infected with asymptomatic SARS-CoV-2 and share key points for consideration in implementing future units elsewhere. CONCLUSION: A major takeaway point of the analysis is the particular expertise of trained experts in psychosomatic medicine for treating patients infected with SARS-CoV-2.


Subject(s)
Asymptomatic Infections , Coronavirus Infections/complications , Hospital Design and Construction/methods , Hospital Units , Hospitalization , Infection Control/methods , Mental Disorders/therapy , Personnel Staffing and Scheduling/organization & administration , Pneumonia, Viral/complications , Betacoronavirus , COVID-19 , Humans , Involuntary Commitment , Mental Disorders/complications , Pandemics , Personal Protective Equipment , Psychiatric Department, Hospital , Psychotherapy, Group/methods , Recreation , SARS-CoV-2 , Ventilation/methods , Visitors to Patients
14.
Nat Commun ; 12(1): 5096, 2021 08 19.
Article in English | MEDLINE | ID: covidwho-1366815

ABSTRACT

Nearly all mass gathering events worldwide were banned at the beginning of the COVID-19 pandemic, as they were suspected of presenting a considerable risk for the transmission of SARS-CoV-2. We investigated the risk of transmitting SARS-CoV-2 by droplets and aerosols during an experimental indoor mass gathering event under three different hygiene practices, and used the data in a simulation study to estimate the resulting burden of disease under conditions of controlled epidemics. Our results show that the mean number of measured direct contacts per visitor was nine persons and this can be reduced substantially by appropriate hygiene practices. A comparison of two versions of ventilation with different air exchange rates and different airflows found that the system which performed worst allowed a ten-fold increase in the number of individuals exposed to infectious aerosols. The overall burden of infections resulting from indoor mass gatherings depends largely on the quality of the ventilation system and the hygiene practices. Presuming an effective ventilation system, indoor mass gathering events with suitable hygiene practices have a very small, if any, effect on epidemic spread.


Subject(s)
Air Pollution, Indoor/prevention & control , COVID-19/transmission , Hygiene/standards , SARS-CoV-2/pathogenicity , Ventilation/methods , Aerosols , COVID-19/diagnosis , COVID-19/virology , Computer Simulation , Disease Transmission, Infectious/prevention & control , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
15.
J Breath Res ; 15(4)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1320288

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has imposed a considerable burden on hospitals and healthcare workers (HCWs) worldwide, increasing the risk of outbreaks and nosocomial transmission to 'non-COVID-19' patients, who represent the highest-risk population in terms of mortality, and HCWs. Since HCWs are at the interface between hospitals on the one hand and the community on the other, they are potential reservoirs, carriers, or victims of severe acute respiratory syndrome coronavirus 2 cross-transmission. In addition, there has been a paradigm shift in the management of viral respiratory outbreaks, such as the widespread testing of patients and HCWs, including asymptomatic individuals. In hospitals, there is a risk of aerosol transmission in poorly ventilated spaces, and when performing aerosol-producing procedures, it is imperative to take measures against aerosol transmission. In particular, spatial separation of the inpatient ward for non-COVID-19 patients from that designated for patients with suspected or confirmed COVID-19 as well as negative-pressure isolation on the floor of the ward, using an airborne infection isolation device could help prevent nosocomial infection.


Subject(s)
COVID-19/prevention & control , Cross Infection/prevention & control , Health Personnel/statistics & numerical data , Hospitals , Infection Control , Physical Distancing , Ventilation , Aerosols , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Testing , Cross Infection/diagnosis , Cross Infection/epidemiology , Cross Infection/transmission , Humans , Infection Control/methods , Infection Control/statistics & numerical data , SARS-CoV-2 , Ventilation/methods , Ventilation/statistics & numerical data
16.
Asian J Endosc Surg ; 14(3): 620-623, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1294946

ABSTRACT

The pandemic of COVID-19 has been a game changer in many aspects of medical care, including laparoscopic surgery service. Uncertainty in the early pandemic has led to the fear of doing laparoscopic surgery with regard to the possibility of SARS-COV-2 transmission through surgical smoke. We carried out laparoscopic surgery during the COVID-19 pandemic with intention to test our local adaptation of a laparoscopic smoke evacuator. Twenty-five laparoscopic cases for digestive surgery were performed with uneventful results. In summary, a low cost local adaptation of laparoscopic smoke and safe surgical behavior should be the standard of care when delivering laparoscopic surgery service in the pandemic era and forward.


Subject(s)
COVID-19 , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Laparoscopy/methods , Laparotomy/methods , Smoke/adverse effects , Ventilation/methods , Humans , Infection Control/methods , Pandemics , SARS-CoV-2
17.
Sci Rep ; 11(1): 11778, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1258598

ABSTRACT

The COVID-19 pandemic has generated many concerns about cross-contamination risks, particularly in hospital settings and Intensive Care Units (ICU). Virus-laden aerosols produced by infected patients can propagate throughout ventilated rooms and put medical personnel entering them at risk. Experimental results found with a schlieren optical method have shown that the air flows generated by a cough and normal breathing were modified by the oxygenation technique used, especially when using High Flow Nasal Canulae, increasing the shedding of potentially infectious airborne particles. This study also uses a 3D Computational Fluid Dynamics model based on a Lattice Boltzmann Method to simulate the air flows as well as the movement of numerous airborne particles produced by a patient's cough within an ICU room under negative pressure. The effects of different mitigation scenarii on the amount of aerosols potentially containing SARS-CoV-2 that are extracted through the ventilation system are investigated. Numerical results indicate that adequate bed orientation and additional air treatment unit positioning can increase by 40% the number of particles extracted and decrease by 25% the amount of particles deposited on surfaces 45s after shedding. This approach could help lay the grounds for a more comprehensive way to tackle contamination risks in hospitals, as the model can be seen as a proof of concept and be adapted to any room configuration.


Subject(s)
Air Microbiology , COVID-19/transmission , Cough/virology , Respiratory Distress Syndrome/virology , Aerosols , Humans , Intensive Care Units , Models, Theoretical , Optical Imaging , Ventilation/methods
20.
Int J Hyg Environ Health ; 234: 113746, 2021 05.
Article in English | MEDLINE | ID: covidwho-1163860

ABSTRACT

Natural window ventilation is frequently employed in schools in Europe and often leads to inadequate levels of human bioeffluents. However, intervention studies that verify whether recommended ventilation targets can be achieved in practice with reasonable ventilation regimes and that are also suitable for countries with cold winters are practically non-existent. To explore the initial situation in Switzerland we carried out carbon dioxide (CO2) measurements during the winter in 100 classrooms, most of which (94%) had natural window ventilation. In more than two thirds of those, the hygienic limit value of 2000 ppm specified for CO2 in the Swiss Standard SN 520180 (2014) was exceeded. To improve ventilation behavior, an intervention was implemented in 23 classrooms during the heating season. Ventilation was performed exclusively during breaks (to avoid discomfort from cold and drafts), efficiently, and only for as long as was necessary to achieve the ventilation objective of compliance with the hygienic limit value (strategic ventilation). The intervention included verbal and written instructions, awareness-raising via a school lesson and an interactive tool for students, which was also used to estimate the required duration of ventilation. CO2 exposure was significantly reduced in pilot classes (Wilcoxon signed-rank test, p = 3.815e-06). Median CO2 levels decreased from 1600 ppm (control group) to 1097 ppm (intervention group), and the average proportion of teaching time at 400-1400 ppm CO2 increased from 40% to 70%. The duration of ventilation was similar to spontaneous natural window ventilation (+5.8%). Stricter ventilation targets are possible. The concept of the intervention is suitable for immediate adoption in schools with natural window ventilation for a limited period, pending the installation of a mechanical ventilation system. The easy integration of this intervention into everyday school life promotes compliance, which is particularly important during the COVID-19 pandemic.


Subject(s)
Air Pollution, Indoor/prevention & control , COVID-19/prevention & control , Environmental Monitoring/methods , Inhalation Exposure/prevention & control , Ventilation/methods , Adolescent , Air Pollution, Indoor/analysis , COVID-19/epidemiology , COVID-19/transmission , Carbon Dioxide/analysis , Child , Disease Transmission, Infectious/prevention & control , Female , Humans , Male , SARS-CoV-2 , Schools , Seasons , Switzerland/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL